Lagrange inversion

نویسنده

  • Ira M. Gessel
چکیده

We give a survey of the Lagrange inversion formula, including different versions and proofs, with applications to combinatorial and formal power series identities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lagrange Inversion and Schur Functions

Macdonald defined an involution on symmetric functions by considering the Lagrange inverse of the generating function of the complete homogeneous symmetric functions. The main result we prove in this note is that the images of skew Schur functions under this involution are either Schur positive or Schur negative symmetric functions. The proof relies on the combinatorics of Lagrange inversion. W...

متن کامل

Lagrange Inversion Counts 35241-Avoiding Permutations

In a previous paper, we showed that 35241-avoiding permutations are counted by the unique sequence that starts with a 1 and shifts left under the self-composition transform. The proof uses a complicated bijection. Here we give a much simpler proof based on Lagrange inversion.

متن کامل

A Physicist’s Proof of the Lagrange-Good Multivariable Inversion Formula

We provide yet another proof of the classical Lagrange-Good multivariable inversion formula using the techniques of quantum field theory.

متن کامل

Fast Lagrange inversion, with an application to factorial numbers

Niederhausen, H., Fast Lagrange inversion, with an application to factorial numbers, Discrete Mathematics 104 (1992) 99-110. Suppose /3(t) and y(t) are a pair of compositional inverse formal powerseries. Lagrange inversion expresses the coefficient oft” in y(t)” in terms of the coefficient of tC” in /c?(t)-“. ‘Fast Lagrange inversion’ calculate the latter for invertible power series with nonzer...

متن کامل

Discretized Adjoint State Time and Frequency Domain Full Waveform Inversion: A Comparative Study

This study derives the discretized adjoint states full waveform inversion (FWI) in both time and frequency domains based on the Lagrange multiplier method. To achieve this, we applied adjoint state inversion on the discretized wave equation in both time domain and frequency domain. Besides, in this article, we introduce reliability tests to show that the inversion is performing as it should be ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 144  شماره 

صفحات  -

تاریخ انتشار 2016